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ABSTRACT. We discuss an iterative method for calculating the reduced bifurca- 
tion equation of the Liapunov-Schmidt method and its numerical approxima- 
tion. Using appropriate genericity assumptions (with symmetry), we derive a 
Taylor series for the reduced equation, where the bifurcation behavior is deter- 
mined by its numerical approximation at a finite order of truncation. 

This method is used to calculate reduced equations at Hopf bifurcation of the 
two-dimensional Brusselator equations on a square with Neumann and Dirichlet 
boundary conditions. We examine several Hopf bifurcations within the three- 
parameter space. There are regions where we observe direct bifurcation to 
branches of periodic solutions with submaximal symmetry. 

1. INTRODUCTION 

Let E E be Banach spaces embedded into a Hilbert space with scalar 
product (,) and G: E x R -- E be a smooth mapping, equivariant un- 
der some action of a symmetry group r. We consider steady state and Hopf 
bifurcation of the problem 

(1) 8it = G(u, A,) with (u, A) E E x R 

at a given bifurcation point (uo, Ao). It is well known, in the case of steady 
state bifurcation with Ker(DG(uo, Ao)) finite-dimensional, that the Liapunov- 
Schmidt method can be used to reduce equation (1) to a finite-dimensional 
bifurcation equation 

B(a, A) = 0 

under certain assumptions on DG(uo, A o) and its kernel. Usually, these equa- 
tions are highly nonlinear and an analysis of their solution can be rather dif- 
ficult. However, in the neighborhood of the bifurcation point we can truncate 
the Taylor series of the equation at a sufficiently high order to give the bifur- 
cation scenario. In ?2 we consider a symmetry-respecting discretization of the 
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Liapunov-Schmidt method to calculate the approximate bifurcation equation 

Bh(a, A) = 0, 

with h the discretization parameter, up to any desired order of truncation 
of the Taylor series. In particular, we use assumptions of stability and finite 
determinacy of the exact bifurcation equations (incorporating any symmetries 
of the problem) to give equivalence of the true and approximate bifurcation 
scenarios (see also Ashwin, Bohmer, and Mei [9]). 

For the rest of this section, we state the necessary definitions and introduce 
the concepts of germs and singularities of bifurcation equations, their stability 
and determinacy. We also introduce an iterative Liapunov-Schmidt reduction 
for Hopf bifurcation (thinking of it as a steady state bifurcation in loop space) 
and prove a theorem stated in [9] giving convergence of the iterative method. 
In ?2 we discuss and also prove convergence of a suitable discretization of the 
iterative Liapunov-Schmidt method. This gives an extension of the possible 
equations to which we can practically apply the Liapunov-Schmidt reduction 
method. Finally, in ?3, we examine applications of the method to computing 
Hopf bifurcations of the two-dimensional Brusselator equations on a square, 
with both Neumann and Dirichlet boundary conditions. We show that the bifur- 
cation structure can be determined by a hybrid numerical/analytical/computer- 
algebraic method in cases where a purely analytical method fails to give results. 
We verify the calculations for Neumann boundary conditions by comparison 
with exact results obtained in Ashwin and Mei [10]. The details of the calcula- 
tions are to be found in the Appendix (in the Supplement section at the end of 
this issue). 

1.1. Preliminaries. The natural language for local steady state bifurcation prob- 
lems is that of germs of functions and their singularities, see, e.g., Martinet [27], 
Golubitsky et al. [21, 23]. We consider 1-parameter problems in m state vari- 
ables with a bifurcation at (0, 0) . If Em, I is the module of germs at (O, 0) of 
C?? vector- and matrix-valued functions from Rm x R -E+ Rv (v = m, m x m, 
respectively) over the ring El 1 of scalar functions, we define the set of bifur- 
cation problems as 

(2) i := {fEmm,1 f(, 0) =0 , auf(0, 0) =0, Jaj(0,0 ) = 0}. 

The set of germs of r-equivariant bifurcation equations is defined as 

If E : yf(u,A)=f(y u,A) Vy Er}. 

We have implicitly assumed that the symmetry group F is represented orthog- 
onally on Rm. To decide when two bifurcation equations are merely defor- 
mations of each other, we need to define an equivalence relation on the space 

Definition 1. Two germs f, g in Yr are equivalent (we write f g) if and 
only if there exist germs of functions X, A, S such that 
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where 

X(O, 0) =O, A(O) = O, A'(0) > O, 
X(Yu, A) YX(U, A), S(YU, A)y = YS(U, O) V Y E ), 

S2(O,0?)} are invertible linear maps with positive determinant. 

Obviously, if (X(u, A), A(1)) and its inverse are smooth in some neighbor- 
hood of (0, 0), this is the definition of Golubitsky et al. [23]. The definition 
means that if f and g are equivalent, there is a locally invertible change of 
parameters A(A) such that f(u, A) and g(X(u, A), A(1)) have the same "num- 
ber of zeros". The germ g E * is said to be finitely determined if jkg g 
for some k E N. (The symbol jkg, called the k-jet, means the truncation of 
the Taylor expansion of g with respect to all its arguments up to and including 
homogeneous terms of order k.) We say g is k-determined if g jkg and 
g7 jlg for all 1<k. 

For any g E Fr we define the pseudonorm 11 I 110 (a norm on the subspace 
of k-jets) by 

(3) lgilo= Z au aAg(0'0) 

using a multi-index i. 

Assumption. For the rest of this paper, we will assume that the germ of the 
reduced bifurcation equation g E * is k-determined for some k, and is 
stable with respect to the pseudonorm (3). .That is, there exists e > 0 such that 
all perturbations f E * of g with Ilf - g II < e satisfy f g. 

In [9], we demonstrate that for a k-determined bifurcation problem, stabil- 
ity with respect to 11 - 110 is equivalent to stability with respect to the Sobolev 
norm 11 * Ilk . One consequence of this assumption is that F must be absolutely 
irreducibly represented on R'm (see [23]). This assumption is reasonable from 
the point of view of structural stability, and could also be expressed by saying 
that g is its own universal unfolding. If a bifurcation comes from a model 
of a physical problem where we cannot expect to know the equations and pa- 
rameters exactly, we can only get sensible results if our model is insensitive to 
small changes in these parameter values. In practice, we cannot tell if a prob- 
lem is finitely determined and stable unless we can perform Liapunov-Schmidt 
reduction analytically, in which case we do not need a numerical method! How- 
ever, we can verify if numerical approximations to coefficients in the Taylor 
expansion tend to values where the assumption would be broken, e.g., certain 
coefficients being zero might imply degenerate behavior. 

We could also have chosen a weaker equivalence relation. For example, we 
could permit coordinate changes of the form A(x, A). This would be quite 
adequate if we only wish to distinguish branches and not their direction of 
branching in parameter space (this might be sufficient for branch switching of a 
path-following algorithm). Note that by choosing this more general equivalence, 
we get lower levels of determinacy; for example the pitchfork X3 + xl = 0 iS 
three-determined for bifurcation equivalence but the truncation at second order 
xl = 0 is two-determined for the weaker equivalence. 
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1. 1. 1. Symmetry. As demonstrated by Golubitsky et al. [21, 23], we need to in- 
clude the symmetry of the problem in the reduction in order to obtain an equiv- 
ariant reduced problem. For finite groups, a symmetry-respecting discretization 
can be defined as described below. For the case of continuous groups, this is 
much harder to achieve except in special cases. In general, we need to choose a 
basis for the discretization that contains its own group orbit, e.g., Fourier series 
for periodic problems. 

If we miss some symmetry in the discretization of a symmetric problem, then 
naturally we cannot expect to get the actual bifurcation scenario reflected in the 
approximate one. Instead we should expect to see a deformation of it. 

1.1.2. Consistent differentiability of the discretization. The above assumptions 
of stability and finite determinacy require that a few of the low-order terms of 
the Taylor expansion determine the bifurcation structure. To guarantee that the 
discretization reflects this behavior, we have to require that the derivatives of 
the discretized equation up to kth order are O(hP) close to those of the true 
equations. This property is called consistent differentiability up to order k and 
is discussed in [9], Bohmer et al. [1 1-13] and in ?2. 

As we are concerned with Hopf bifurcation, we first state a standard method 
(e.g., Vanderbauwhede [36]) for reducing the problem to a steady state problem. 

1.1.3. Hopf bifurcation. We assume that the linearization auG(O, 0) of equa- 
tion (1) has a pair of semisimple imaginary eigenvalues ?icwo, each of multi- 
plicity 1, and no other eigenvalues at micoo for m E Z, m :$ +1, where 1 
is a dimension of an absolutely irreducible representation of r. We define the 
following problem from the original 1-parameter problem: 

(4) (D(U, , A) := G(u, A) - zo(l + T)aSu 

as a mapping from C x R x Rx to C2ir with a trivial solution, where 

C27r ={u(.) E C(R, E) : u(s + 27r) = u(s)} and 
:{u(), 0 2(.) E C(R, E): u(s + 27r) = u(s)}. 

We treat the parameter T as a state variable (i.e., we allow changes of coordi- 
nates mixing T and u(t)), but we keep A as the parameter. We use the usual 
inner product 

(u(s) V(S))C2,i 271 soE (s sV ds 
2rJs=0\ / 

Using the hypotheses for Hopf bifurcation, we find that D(P(O, 0) satisfies the 
conditions for Liapunov-Schmidt reduction: fixed points in C2 correspond to 
periodic solutions of equation (1). 

1.2. The Liapunov-Schmidt reduction. Consider the operator equation 

(5) (D:E x R-E, 
O = (P(u, A) =: D(P(O, 0)(u, A) + R(u, A), 

where (D is a smooth 1-parameter mapping between the Banach spaces E c E 
with (1(O, 0) = 0 (in fact we only need one degree of smoothness greater than 
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the determinacy). Note that by definition, R(z) = O(11z112), where z = (u, A)). 
We require that 

?0:= D(P(O, O) := (au(D(O, O), 8,aA(O, ? )) 

is a Fredholm operator of index 1 with a kernel of dimension m + 1, m > 1. 
Furthermore, we exclude turning point bifurcations (they are regular points of 
the mapping (D) and so can assume, reparameterizing if necessary, that 

aAI(O, 0) = 0. 

This corresponds to the assumption of a trivial solution from which the branches 
bifurcate. 

Using the Fredholm condition, we split the spaces in the standard way: 

E x R = Ker(VD0) G Im(D0*), 
E = Ker((D0*) G Im((D) 

with (DI the adjoint operator and with e indicating orthogonality with respect 
to (, *), usually the inner product in L2(.) of the original Hilbert space into 
which E and E are embedded. We define the projections 

(6) QQ: E x RD Im(ID'*), Ker(Q) = Ker(ID') = Ker(aAuPo) x R and 
Q: E -m(ID'), Ker(Q) =Ker((D'*). 

Using these projectors, we write z = 71+ w with ?I E Ker((D') and w E Im(ID'*) 
and split equation (5) into two: 

(7) Q(D(?1 + w) = O, 

(8) (I - Q)'D(i1 + w) =0. 

Equation (7) is solvable in terms of ?I for small ?I and gives w(?I) =- 0(12) 
uniquely, and this is substituted into equation (8) to give the reduced bifurcation 
equation: 

(9) B(it) := (I - Q)1(D1 + w(q)) = (I - Q)R(I + w(q)) = 0. 

In order for symmetries of (D to be inherited by B, we must choose projectors 
Q, Q commuting with the symmetries, see e.g., [21] or [36]. We now give an 
iterative method to solve equation (7) that develops the Taylor expansion of B 
and is presented in [6-9]. This was used in [1] to calculate higher-order terms 
in a periodic boundary value problem. The functions w(?1) and B(?1) can be 
obtained iteratively using the following Algorithm. 

Algorithm 2. Truncated Liapunov-Schmidt Method. 
Initialization. Pick an initial function 

(10) Wl(6)=0 

a mapping from Ker(?D) to Im(ID'*). We identify ?1 e Ker(tD') with (a, A) E 

RDm+l and Ker((D'*) with Rm. 
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Iteration. For k = 2, 3, ... until determinacy, do: at each stage define the 
truncated bifurcation equations to be 

( 1 1 ) ~Bk (1) := (I -Q)jkR(q + Wk-1 I W) = ? Q 

where Bk is a polynomial of kth order from Ker(DI>) to Ker(DI*), and 

(12) Wk(1) := -Q(D)Y'QIkR(l + Wk-I(1)). 

This iteration creates a sequence of kth-order polynomial functions 

(13) Wk : Ker((D') -- Im(DO*). 

Theorem 3. For the iteration defined in (1 1), (12), we have 

Wk(1) = jkW(q) and Bk(q) = jkB(q). 
Proof. Consider 

(14) Wk+1-Wk = -Q(F0)'Q [jk+1R(? + Wk()) - jkR(1 + Wk.1(?))]- 

Now ji(R(q)) = 0 implies that 

jk(R(Y(1))) = jk(R(jk-lY(@))) 

for all functions y(1) with jo(y(1)) = 1. By induction we get that for all k > 2 

jk(R(1 + Wk) - R(t + Wk_l(?)) = 0 

= ik(Wk+lWk)O= 
J IkWk+l = Wk. 

By the fact that jkQI(D1 + Wk( )) = jkQI(D + w(q)) = 0, this means that the 
solution w (I) of QR(I + w (1)) = 0 has Taylor series jkw(IW) = Wk(?1) . This 
implies that ikB(1) = Bk (t) * 

2. DISCRETIZING THE TRUNCATED LIAPUNOV-SCHMIDT METHOD 

2.1. Finite and continuous symmetries. As described in Golubitsky and Stewart 
[22], at Hopf bifurcation we gain an extra SI symmetry from the fact that our 
system is autonomous, and this may cause problems with the discretization. 
However, the simplicity of the dependence on the time derivative allows us to 
work in spaces of finite Fourier sums: 

k 

Pk = E{ amcosmt+bmsinmt: am, bm EE}. 

In fact, the calculation of Wk+l and Bk+I can be performed in P2k. 

For other continuous symmetries, we can think of the whole group as split 
into the semidirect product of a continuous and a finite group r = IF XS 1f . 
For many important problems, the continuous group can be represented as act- 
ing on a r-symmetry-respecting basis (e.g., Fourier series for Tk, spherical 
harmonics for SO(3), see e.g. Dellnitz [16] and Gekeler [19]). In the case that 
finite products of elements in this basis can be expressed or approximated as 
finite sums of other elements in the basis, we can use finite bases to describe a 
discretization preserving the full symmetry. We therefore assume for the rest of 
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this section that our problem is equivariant under some finite symmetry group 
r. 

In order to preserve equivariance in the discretized iteration process, we use 
the technique developed in Bohmer [11, 12]. We now give a short outline of 
necessary results adapted from [12]. 

2.2. Consistently differentiable discretization methods. We consider discretiza- 
tions of (5) indexed by h E H. We use linear bounded restriction operators 
,h and 7h mapping E x R and E into the respective finite-dimensional dis- 
crete spaces Eh x R and Eh. We assume 7h acts on z = (u, A) E E x R by 
transforming u E E into a discrete ukh - nhU E Eh, leaving A unchanged. Let 
,rh 9th satisfy: 

7h:EXR R Eh xR, h :EE h 
(15) 7hZ = 7r h(U, A) = (7hU, A) and Iirh"ZIl = lizil + O(hPIIzIIE,), 

IIft h9II = IIY I + O(hP IIE '1I) 

for fixed z, y in appropriate subspaces Es, E,. The O(hP) term in irhz is 
due to irhu. The operator D in (5) is transformed into.a discrete operator 

domain((Dh) c Eh Eh If E is defined for a Sobolev norm with 
derivatives of order I iI + j < n, then Es requires a norm with derivatives of 
orders I iI + j < n + p . In such a case we choose n such that -D is continuous 
on E. For simplicity, we do not distinguish between E, E and their smooth 
subspaces Es, Es. Strictly speaking, the latter are needed for consistency and 
convergence in (15) and (16), but these conditions may be relaxed by using 
weak discrete Sobolev norms as indicated in Hackbusch [26]. By expanding D 
in a Taylor series, we can ensure that, for many discretization methods, Oh is 
r times consistently differentiable: 

rh(XhZ) = h(Dz + O(hPIIzIIE,) for z E Es and for j = 1,..., r, 
(16) Dh(j)(7rhZ)7r hZI * * * 7=h[?j(Z ) + z(hP 1.z)]zl ..z *Z 

* forz, zl,...,ZE Es, 

where e(hP, z) represents a j-linear operator and 

|le(hP . z)II < 0(hPIIzjIES). 

Since the operators *h(j)(7rhZ)7rh ... *th and fhF(J)(Z) in (16) act multilinearly 
on z1., ... , Zj , the same is true for e(h, z) by definition. Example calculations 
showing this are described in [9]. A combination of (16) with the usual stability 

11zh -.hl < CIIIDh(zh) - (D h)ll 

for zh - h near the solution, yields the intended convergence. 

2.3. Equivariant discretization methods. We choose discretization methods 
which preserve the r-equivariance of the original problem. In ? 1 we discussed 
the matter of reducing the problem to a finite-dimensional system with discrete 
symmetries and finite group F. Indicating the action of y E F on elements in 
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E, E, Eh and Eh, respectively, with the same y, we have 

(17) -(D(yu, A) = y(D(u, A) for all y E IF. 

For the discretization (Dh we have to choose Eh and Eh such that, e.g., uh E 
Eh implies that yuh E Eh for all y E r. Furthermore, (Dh and the restriction 
operators Ch, * h must be defined such that they commute with the action of 
F on the appropriate spaces, i.e., 

4Dh(yuh ,1) = y-(DhUh A), 
( 1 8 ) Uh yuh = y 7erh uh, h h h1hh yuh =,h -h 

for all y e F and uh E Eh, Uh 'h 

This is achieved by approximating the F-equivariant terms of, e.g., function 
values, derivatives or integrals in an appropriate F-equivariant way. As exam- 
ples, let us study the evaluation of u, the Laplacian Au and a function g(Vu) 
for functions defined on a domain Q c R2 admitting a symmetry group F. 
The set of gnidpoints Gh, constituting Eh (and E*), and the approximations 
Ah, Vh and uh for A, V and u respectively, satisfy 

yGh = Gh, Ah yuh = yAh uh 

Vhyuh = yVhuh, Uh(y(x, y))=yuh(x, y)vYE. 

Hence, we can use the five-point star approximation for finite difference ap- 
proximation of the Laplacian A on Q = [0, 1]2 (F - D4), or the seven-point 
star for a regular hexagonal grid ( F = D6). For g(Vhu) or uh we must do ap- 
proximations using these F-invariant stars. In this case we have convergence of 
order p = 2. The discrete inner products, e.g. (22), have to be approximated 
with the same order, so for Q = [0, 1]2 a trapezoidal rule with appropriate 
weights on the boundary points will work. 

In the case of finite elements, the finite-dimensional subspaces should be 
chosen equivariantly. If variational approaches to (17) are studied, the F- 
equivariance is directly inherited by the discretizations. If finitely many func- 
tionals are equal to zero, the corresponding discretizations must again be F- 
equivariant. 

By these considerations we indicate how (17) can be equivariantly discretized. 
Detailed examples are studied in Allgower et al. [4, 5]. 

Since solutions of arbitrarily discretized cDh (uh) = 0 will not respect any 
symmetries of the problem, we have to formulate cDh with respect to a basis 
maintaining the symmetry, a so-called symmetry-respecting basis; see Stiefel- 
Fassler [31], Allgower, Bohmer, and Mei [4, 5], Allgower, Bohmer, Georg, and 
Miranda [3], Georg and Miranda [20] and Douglas and Mandel [17]. Then we 
are able to numerically define fixed point subspaces within Eh and Eh: 

(19) E' h:= FiXh(E) ={Zh Eh I Zh = azhVaE} 

As a consequence of (18) we are able to consider the discrete problem Dh (Zh) 
on a fixed point subspace (19) of subgroups I< F, i.e., we have that cDh and 
all its derivatives (and remainder terms) evaluated at zh are Xzh equivariant, 
with Xzh being the isotropy subgroup of the point zh. If cDh is stable or r 
times consistently differentiable, the same is true for cFh ,l. 
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Throughout, we have assumed that we study the original problem in its sin- 
gularity at (0,0). The discretization cDh will usually not be singular at (0, 0), 
but at a slightly perturbed point, in particular, the bifurcation will occur at some 
Ah z 0. Again, we use coordinate transformations to shift the singularity of oh 

to (0, 0). Let z, (0 or W be solutions of 

D(z) = 0, -D'(0, 0)(o = g or D/*(0, 0)= 9; 

then there exist discrete solutions zh, I2 h, of 

,Dh(Zh) = 0, i/(0, 0)q,h =hg or h/*(0 0)-h =th4, 

see Allgower and Bohmer [2], such that 

rhzzh = O(hP), 7hI _h = O(hP), Qh 
- 

h 0(hP) 

The O(hP) terms are also elements in Eh,7. For more details, see [9]. 

2.4. Equivariant discretization near singularities. We shall restrict our discus- 
sion to discretizations of bifurcation problems at (0, 0) with the following 
properties: 

(a) aA(0,0 ) =0; 
(b) The discretized problem has the identical symmetry 

(20) and a bifurcation at (0, 0), usually after a shift; 
(c) aAD h(o, 0) = o; 

(d) The kernels of (D0 and ID' have the same dimension. 

(Since the higher dimensions of these kernels are generically caused by symme- 
try, this and our assumption in ? 1 imply 20(d).) We need the results in ??2.1 
and 2.2 to be able to formulate an appropriate discretization reflecting the bi- 
furcation scenario close to singularities. This singularity may be analytically or 
numerically determined in the sense that we know either 

Ker((D') = V/ ., vm] X R, Ker((D'*) = [W1 *s v... 

or approximations 

(21) Ker()') = [4 h , x R, Ker(1h/*) - VI . , 

with 
7rh =gVi+(* fih =hf O(- ) 

Working with an equivariant discretization method, we may assume that yi; 
and 0 have been determined in the same fixed point subspaces as the y,i and 
t,i respectively. Furthermore, our assumption that the problem is a generic 
F-equivariant problem means that the kernel of the linearized operator is of a 
generic size, i.e., the dimension of an absolutely irreducible representation of F 
for the case of one parameter. 

In ? 1 we described a truncated Liapunov-Schmidt method, defining the Bk 

and Wk. By means of the properties of the operator 0, the projections Q and 
Q have to be. transformed into a discrete setting. We now discuss these discrete 
projectors Qh and h 
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A discrete realization of Algorithm 2 is prevented by the fact that the usual 
stability of (Dh, and hence convergence, breaks down near singularities. This 
difficulty is studied in Bohmer [11, 12] and Bohmer and Mei [13]. However, 
the situation here is much simpler, owing to the assumption of genericity in the 
(symmetric) discrete setting. In [ 11 ] and [ 1 3], we had to use extension operators 
for the case of Ker(?D) being of a different dimension than Ker(qDh') . We use 

the discrete pairing or inner product (., .)h related to (, *) by 

(22) (7hhu, 7hV)h = (u, v) + O(hP JuJJ,J|v|Is), 

where 11 *Il indicates the smooth norm. Corresponding results hold in E and 
fh as well. We assume that the original and discrete pairings (,*) and (., *)h 

are F-invariant, 

(23) (u, v) = (yu, yv), (uh, Vh)h = (yuh yvh)h V y E F, 

by defining, if necessary, a symmetrized version 

[u, v]:= IZ(Yu, yv) 
yErT 

for the finite group r, where IFl is the order of F. We define 

(24) Eh - Ker(?') e Im(>ED'h*) Nh e Mh, 
( )h - Ker(hIPI*) @ Im(ID') =:jh h M*. 

Since all the kernels and images in (24) are r-invariant subspaces, the orthog- 
onality is also valid for the r-invariant pairing (., *)h. The next proposition 
relates the continuous and discrete projectors, and is stated without proof in 
[9]. Consider 

Qu := _Eml f, u) i 
Q(u,1):=Qu for (u, A)EEx R, 

Qu:= u-E=(i ) for uEE, 
QhUh Uh - m Z 1(h Uh)hv4, 

Qh(Uh, A) := Qhuh for (uh A) e Eh x R, 
'h -h := 4 - z:M I (1ih, -ih) hih for all -h E 'h 

Proposition 4. Under the assumption that (21)-(23) are satisfied, the projectors 
Q, Q, Qh~, Qh are F-equivariant projections satisfying 

7hQz- Q7rhz = O(hPllzll), 
- Qhh = O(hP lh-hl), 

with the error terms also equivariant under r1. The same is true for the projection 
I -Q. 
Proof. Since, for each y E r, the {yV/iJ}Tl represent a basis for Ker(O9u4Do), 
we have 

m m 

Qyu = yu - Z', Yu)yi = yu - E(Yvi , yu)yi = yQu 
i=l i=1 
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and so on. Furthermore, 

7rhQu- Qh7hu = u) 
h ( 7,h,thU)h> 7h 

i=1 

+(4h Xhu)h(7rh _ i. - = O(hP). i 

Summarizing, we have discrete operators that are close to 1, Q and Q up 
to F-equivariant perturbations of (relative) size O(hP). 

To obtain stability of the numerical solutions near the singularity in (11), 
(12), it is necessary to modify the conventional stability by assuming that 

(25) 0 __IMh Mb = 4 

is boundedly invertible, uniformly for small h, in the appropriate norms. Re- 
sults of this type have been obtained for discretized problems by Brezzi, Rappaz, 
and Raviart [14], Esser [18], Grigorieff [25], Reinhard [30], Stummel [32, 33], 
and Vainikko [35]. To get the k-jets, ik, for the discrete problem, we merely 
truncate the Taylor series for the discrete operators. The numerical version of 
the iterative Liapunov-Schmidt algorithm follows. 

Algorithm 5. Discrete Truncated Liapunov-Schmidt Method. 
Initialization. Define the function wh Ker(IP') Im(IOo'*) by 

WI (17) = o 

for all qh E Ker((dh '). 
Iteration. For k = 2, 3, ... until determinacy, do: 

(26) Bh(qh) := (I_ Qh)ikRh(l7h +Wh_(6h)) 

where Bkh is a polynomial of kth order in ?h from Ker(IDh') to Ker(Doh*). 
We generate the next function wh with the formula 

(27) wh(qh) = Qh( Dh)lQhjkRh(lh +WhL( h)), 

where w h is a kth-order polynomial from Ker(IP') to Im( '/*). 

The following result shows the required convergence of the discrete approxi- 
mations to the true bifurcation equation. Thus, we are assured by the stability 
and k-determinacy of B that (for small enough h) B = 0 and Bkh+ = 0 give 
the same bifurcation scenario. 

Theorem 6. Let eD and its discretization OFh satisfy the following conditions: 

(i) r times consistent differentiability, see (16), 
(ii) oh is a r -equivariant discretization for 1, see (18); 
(iii) the singularity satisfies (20) and (21); 
(iv) the pairings are chosen to satisfy (22) and (23); 
(v) DhoI satisfies the modified stability, see (25). 
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Then the Wk, Bk from Algorithm 2 and their discrete approximations from 
Algorithm 5 satisfy 

(28) IIwk^(h6) XhWk(q)II = 0(hPIIjII), II(Bk(h) - Bk(q)II = 0(hPItIII) 

with the differences being r-equivariant. The norm for the wk approximation 
is given by (23); for Bh we use (3). Furthermore, Bk and Bh are elements of 
9. k 
Proof. We proceed by induction. Obviously, we have that, with the multi-index 

J,, 

h( + wh(?,h)) = jk+1 E sh(v)(,h + h(,7h))v 
Iz'I=2 

In (29) and below in (30), (31), we may also omit all the discretization param- 
eters h to obtain the corresponding formulas for the original problem. To ob- 
tain (28), we have to compute the derivatives in (3) for Bk+1 (?I) and Bh+, (7rh') 
as polynomials in i of order k + 1 with respect to . Therefore, only deriva- 
tives up to order k + 1 are of interest. Since the defining terms for Bk+l and 
Bkh+lB except ?I, Wk(?) and ?I, wh(6h), are independent of il and th , re- 

spectively, see (6), (9), (11), (26), (27), (29), we exchange the derivatives -Q- 

'; of the relevant operators and need only study, for the multi-indices i and 

(30) ( <h)i |i| il < k + I 

where we identify Q E Ker((Do') and Irh E Ker(Do') with elements in Rm+1. 
For any i (ij,...im+,), j (jl,.. jm+,) and Iij, ljl <k+ I, we 

obtain 

(i 0 if il > jl for at least one 1, 
(31) a '( )j=l!j if i= ij 11 LLj! if il<1j1 for alll1. 

In particular, we find with ,rhwl - = 0 and i1h = ?, using (16) and 
Proposition 4, that 

ai 
- i h 1h()h) 

- 
B22))2 

h) (I Dh (2)F0rh 2 (7)) (I-Q)2q0 (7)) 

(32) = (I -h) 1(Dh (2)71h7* h h 
D(2)) 2 

+[(I _ -h) h _ (I _ Q)] I (2) 8 2 

= O(hPIl)II) 
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Similarly, by (12), (27), (16), and Proposition 4, 

(ah)i (W2( t) - W2(1)) 

(33) - Qh(c*')-lQhi2 o (IFh (2) h - h zD(2) )0 

+[Qh(qD)-1 'hQj2-[h-Qo- 
j]1()8( 

= O(hPIIJII), 

where in both cases the O(hP IIUI) terms are r-equivariant. 
An inductive combination of (26), (27), (29)-(33) finally gives that B h+ 

is a small r-equivariant perturbation of Bk+I in the pseudonorm (3). The 
corresponding estimates for derivatives of wh+ (7irh7) - Wk+1(11) with respect 
to ? are valid as well, but are not really important. 

Bk+1 and BRh are both r-equivariant since they are defined by r-equi- k+1 
variant operations based on the appropriate identification of q = (a, A) E 
Rm+l . Hence, we only have to show that for Bk+1 and Bk+1 we have, for 
example, 

Bk+1(O,O)=O, 0aBk+l(O, )=O, dBk+1(O, O) =O. 

For Bk+1 and Bkh+ , this is an immediate consequence of the fact that their 
linear terms are annihilated by the projection (I - Q)Ik+1 * 

3. HOPF BIFURCATION FOR THE 2-D BRUSSELATOR EQUATIONS 

In this section we consider an example application of the numerical Liapunov- 
Schmidt technique to a Hopf bifurcation problem of a partial differential equa- 
tion on a square domain. We consider an example from the dynamics of chem- 
ical systems. After discussing the linear problem and the symmetries of the 
nonlinear problem, we use null space coordinates in C2 giving two coupled cu- 
bic equations which generically determine the branching behavior. This normal 
form is investigated using results of Swift [34], and we obtain the bifurcation 
behavior at a variety of different spatial mode numbers, with both Neumann 
and Dirichlet boundary conditions. 

3.1. The Brusselator equations. The following reaction-diffusion system pro- 
posed by Prigogine and Glansdorff [29] is a model for the Belousov-Zhabotinskii 
reaction; although it is not a very good model, it is simple enough to be amenable 
to analysis while showing a wide range of dynamical and bifurcation behavior: 

(34) atUl = Au1 +A -(B ++ l)U1 + U12U2 in Q := [0, 7] x [0, 7n], 
atU2 = dAu2 + (B + A)ui - U12U2, 

where A, d E (0, +oo), B E [O j o) are parameters. For convenience, we 
consider an extra parameter A E R as a bifurcation parameter. We take the 
boundary conditions to be Neumann (0aul = anU2 = 0) or Dirichlet (ul = 
A, u2 = (B + A)/A) on aQ, where An represents the normal derivative along 
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the boundary of Q. It is easy to verify that this problem has a trivial solution 

(35) (Ul, U2) = (A, (B + A)/A). 

For simplicity, we fix the parameters A, B and d and consider bifurcation of 
equation (34) along the trivial solution curve with respect to A. To this end, 
we substitute 

(U I, u2) - (A, (B +A)IA) + (ul, U2), t 4- (OO+ T) t 

(the frequency coo is to be specified later) and derive the following equation 
from equation (34): 

(36) CD(u, A, T) := [L(B)u- cooatu] + R(u, i, T), 

where u:= (ul, u2)T, 

(37) L(B) := ( _B dA-A2J 

and 

(38) R(u, A, T) := (1) (Bj+jz4 + 2Au1u2 + U2 + AUI) - Tatu. 

The operator L maps from E := (Co, s(Q))2 to E := (C(2))2, where C0 S(Q) 
consists of twice differentiable functions on Q satisfying a Holder condition 
and homogeneous Dirichlet or Neumann boundary conditions. In particular, we 
consider bases for C2, C27,, see ? 1.1.3, with coefficients in E, E, respectively, 
to be 

{1, coslt, sinlt: l= 1, 2, ...}. 

Obviously, the operator D maps C, into C27r and 

0>(O, A, T) = 0 for all A, T E [0, x0). 

Considering eigenfunctions of the Laplacian -A on the unit square with Neu- 
mann or Dirichlet boundary conditions, one sees easily that if for a given con- 
stant do > 0 the system 

(39) B-1-A2 _ (1 +do)c = 0, 

(40) (1 + c)(A2 +doc)-doBc > 0 

has solutions (Ao, Bo) E R2 for exactly one eigenvalue c :- (k2 + 12)r2, k, 1 E 
N of -A, then the operator 

(41) au(Do := auI(O, 0, 0) = L(Bo) - (O0Ot 

with co := 1 + c)(Ao + doc) - doBoc is singular. We assume that the eigen- 
value c has multiplicity 2, and so the null space Ker(auDO4) is 4-dimensional. 
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Moreover, we can write 

(42) Ker(auDIo) = [I, VI2, 213 Y'4] 

with 

P = (Pij)i,=I,2 := 1, (Bo B - dC A 2 (OO'\ -0 - eA0, 

VI (el cos t + Pe, sin t)/k1, V/2 (-Pe, cos t + el sin t)k41, 

/3 :=(eI cost + PeI sin t)(1k, V/4 (-Pe, cost + el sin t)(1k, 

where 

el 0() e2 () 

and for Dirichlet boundary conditions 

Okl(X, y) := sinkxsinly, Ilk(X, y) :=sinlxsinky, 

or for Neumann boundary conditions 

kkl (X, Y) := cos kx cos ly, qlk (x, y) := cos lx cos ky, 

see [10]. The null space of the adjoint operator auO*(0, 0, 0) is given by 

(43) Ker(auOI) = [Vi;* IV2* ' /3* ' V] 

with P21 = -Bo/coo and 

VI l(PTe2 cost + e2 sin t)q$kl, y2* : 1(-e2 cos t + PTe2 sin t)qkl, 

/3* =)Pl2(PTe2 cos t + e2 sin t)qlkk, :=4 - (-e2 cos t + PTe2 sin t)q$lk. 

This gives 

(44) (v,i*, /I) j= jj, i, j= 1,. , 4 

with the L2-product 

(45) (u, v) = 27r (42-J(u, v)dxdy)dt 

in C2,,, where (, *) represents the Euclidean product in R2. Since auOo is 
a Fredholm operator with index 0 and its zero eigenvalues are of semisimple 
type, we have the decompositions 

(46) C27 = Ker(OuDO) e Im(6A00), C212 = Ker(Ou0o) e (Im(Ou0o) n C21). 

Define the D4 x SI-equivariant projection Q: C22 -+ Im(a0)o) by 
4 

(47) Qw =w-ZE(i*,w)Vif, weC27. 
i=l 

Equation (46) shows that Q is a projection from C21,, into Im(aOAo) nf C2',,. 

Moreover, Q =Q'C, 
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3.2. Equivariance of the equations. The symmetries of the domain together with 
time-translation give the problem a D4 x SI equivariance. This will be utilized 
to reduce the computational work. The D4 action on Q2 = [0, 7r] x [0, 7r] is 
generated by action of the reflections R and S, 

(48) R(x, y) = (y, x), S(x, y) = (7c- x, y) V (x, y) E Q 

The action of D4 x SI on C2,, is given by 

(6 ') U(vx y, t)) U(6(-(x, y) t -0)) V (6a 0) E D4 x Sle (I5 6;KX2' 2,) = -(X, Y), t - ))v~6e4 

This action induces an action on R4, coordinates in the null space Eai Yi. 

Since 

SOkl = (-1) kl, R/kl = 'ik, 

S'lk = (-1)"k1k, R'lk = 'kl 

hold for Neumann boundary conditions (and similarly for Dirichlet), the in- 
duced action of D4 on (al, ..., a4) is generated by 

S(atl, t2 , t3 , at4)T = ((_I)ka>, (_I)k a2 , (- I)lat3, (-)la4 )T 

and 
R(al, a2 3 3, a4)T = (a3 a' al,a2T 

The action of S1 induced on (a ... , a4) is 

(alA : cos6 sinG 0 0 (al\ 

3 .= 0 0 cos 0 sin 0 a3 

ia4 0 0 -sin 0 cos 0 a4/ 

In particular, 

(49) T7= --a, T22a = (a2 -al1, a4, -a3) 

Hence, the symmetry group of the (reduced) bifurcation equation depends on 
the parity of (k, 1) . We have the following possibilities (the genericity of which 
is discussed at length in Crawford [1 5]): 

* Both k, 1 are even, implying 

Sr = a. 

Together with (49) we see that D4 x S1 acts reducibly on R4. 
* Both k, I are odd, implying 

Sr =-a. 

Here we also have D4 x S1 acting reducibly on R4. 
* (k, 1) = (even, odd) (or (k, 1) = (odd,even)), implying 

Sat = (a'l, a2,-a3, ,-a4) (or Sa = -(al, a2, -a3,-a4)). 

In this case D4 x S1 acts irreducibly on R4. 
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Note that the parity of the modes can also have an important effect on the 
nonlinear terms in the normal form for steady state bifurcation, in particular 
in mode interactions (cf. Gomes [24], Crawford [1 5]). We limit our discussion 
to the third case, where we can use generic D4 x S1 bifurcation theory. Work 
is underway to apply this method to the other cases [8]. 

3.3. Results. The details of the calculations to produce B3 , the cubic truncation 
of the reduced equations, are given in the Appendix. Recall from Swift [34] that 
the normal form for D4 Hopf bifurcation is determined to cubic order by three 
complex coefficients U, V, W, and can be written 

(50) 0 = Z+[# + iq + U(z+12 + Iz_12) + VIZ+i2] + WTZ+Z2 

with the equation for z_ obtained by interchanging z+ and z_ . The variables 
z+, z_ and ,u, q$ represent state and control variables, all of which are zero at 
the bifurcation point. In this case the null space is parameterized by (z+, z_) E 
C2, and the actions of the group are given by 

R(z+, z_) = (-iz_, iz+), S(z+, z_) = +(z_, z+), 
T0(z+, z_) = ei0(z+, z_). 

By defining 
Z+= a + a4 + i(a2 -a3), 

z- = a- a4 + i(a2 + a3) 

and changing to these coordinates in 2, we obtain the normal form (50) at 
cubic order. We remark that although the work of Swift involves analyzing a 
dynamical normal form (i.e., z+ replaces 0 on the left-hand side of (50)), all 
results regarding branching of periodic solutions carry over to our steady state 
case. In order to get dynamical information as well (for example, branching of 
quasiperiodic solutions), it is necessary to perform a center manifold reduction 
of the original equations. 

For our case, it follows from equations (54) and (55) (in the Supplement 
section) that the parameters in (50) are given by 

:A/2, 
T + doc/2A, 

implying that (,u, q) is uniquely determined by (A, r). The nondegeneracy 
conditions for determinacy of directions of branching (i.e., not including their 
stability) are: 

Ru:= Re(U + V/2 + W/2) 0 , 

51) RV:= Re(U + V/2 - W/2) 0, 
(51) Rw:= Re(U+ V) :$ 0, 

Vj2 $ Wj2 $ jRe(VW)j. 

The real variables Ru, Rv and Rw determine the branching of the three solu- 
tions with the three isotropy subgroups with 2-dimensional fixed point spaces; 
the Vertex, Edge and Rotating waves referred to by Swift [34]. These are peri- 
odic solutions branching from the trivial solution with the maximal symmetry 
types indicated in Table 1. The symmetry of vertex (resp. edge) waves is the 
reflection R (resp. S). The symmetry of rotating waves relates to its name, 
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TABLE 1. The quantities Ru R, Rw determine the 
branching of solutions with the three maximal isotropy types 
as the parameter ,u = A/2 varies. The D2 correspond to 
symmetries generated by reflection in two planes coupled with 
a temporal phase shift of half a period for one of them. 

Name (z+, z_) Symmetry 
Edge oscillation -u/RU z+ =z D2 ( ) 
Vertex oscillation -u/R, z+ = iz_ D2(2) 
Rotating wave -js/Rw z = 0 Z4 

i.e., the rotation generated by R * S combined with a temporal phase shift of 
one quarter of a period. 

Of special interest in this system is the possible existence of branches of solu- 
tions with submaximal isotropy, i.e., branches not predicted by the equivariant 
Hopf branching lemma of Golubitsky and Stewart [22]. In this system, there 
can be such solutions with no symmetry bifurcating from the trivial solution if 
the following condition is fulfilled: 

IV12 > IWI2 > IRe(VW)I. 

We concentrate on computing the Hopf bifurcation of the (1, 2): (2, 1) 
spatial modes for the Brusselator equations with Ao = 1, several values of do 
and using two different (homogeneous) boundary conditions. 

3.3.1. Neumann boundary conditions. In order to validate the method, we chose 
first to calculate the results for Neumann boundary conditions, and verify them 
against the analytical results obtained in [10]. All the computations are done 
with double precision in the finite difference methods and using a trapezoidal 
integration rule with adapted weights for the points on edges and corners. The 
values of U, V, and W in the reduced bifurcation equation (50) were obtained 
for various values of the discretization parameter at Hopf bifurcation with 
A = 1, do = 1/5, and as can be seen in Table 2. Table 3 shows what these values 
of the coefficients imply for the various quantities determining the branching 
behavior. In this case, we can verify that the assumptions of 3-determinacy and 
stability are satisfied for small enough h; the nondegeneracy conditions (51) 
are satisfied. There is excellent h2-convergence of the numerical predictions to 
the exact results. For example, if we denote the error of numerical approxi- 
mations of RU as a function Err(h, Ru), the first column of Table 3 shows 
Err(l /10, Ru) = 0.0202, Err(l /20 , Ru) = 0.004, Err(l /40, Ru) = 0.00102, 
which in turn indicates the h2-convergence. As can be seen from Table 3, for 
Neumann boundary condition Hopf bifurcation of the (1, 2): (2, 1) modes, all 
branches of solutions exist only for u (and therefore A) positive. We can also 
see that the conditions for existence of solutions with submaximal symmetry 
are satisfied. 
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TABLE 2. The results with Neumann boundary conditions for 
the (1, 2): (2, 1) Hopf bifurcation at A = 1, do = 1/5. 
The h refers to the step size for discretization, and the reduced 
equation is determined by the three complex coefficients U, 
V and W. The predictions are calculated via fourth-order 
polynomial extrapolation in h . The exact results are taken from 
Ashwin and Mei [10]. 

h u v w 
1/10 - 1.40293 - 0.646856i 0.811598 + 0.252318i -0.0618543 + 0.169199i 
1/20 -1.42061 - 0.625768i 0.802736 + 0.225045i -0.0495027 + 0.187299i 
1/30 - 1.42335 - 0.621785i 0.800934 + 0.220424i -0.0470687 + 0.190293i 
1/40 - 1.42428 - 0.620388i 0.800295 + 0.218836i -0.0462092 + 0.191317i 
pred. - 1.42545 - 0.618593i 0.799470 + 0.216815i -0.0451025 +0.1926I6i 
exact - 1.42545 - 0.618590i 0.799467 + 0.216817i -0.0450990 + 0.192614i 

TABLE 3. These are the real quantities for Neumann 
boundary conditions and determine the direction and amplitude 
of branching. They are shown for various values of 
the discretization parameter. Note that the nondegeneracy 
conditions (51) are satisfied for the exact solution and all the 
listed approximations. Also note that the condition IV12 > 
IW12 > jRe(VW)l for the existence of submaximal solutions 
is satisfied. 

h RU RV Rw lV12 l W12 Re(VW) 
1/10 -1.02806 -0.966210 -0.591337 0.722356 0.0324544 -0.0075087 
1/20 -1.04399 -0.994490 -0.617873 0.695031 0.0375316 0.0024132 
1/30 -1.04642 -0.999357 -0.622424 0.690083 0.0384272 0.0042464 
1/40 -1.04724 -1.00103 -0.623990 0.688362 0.0387376 0.0048861 
pred. -1.04827 -1.00316 -0.625983 0.686160 0.0391346 0.0057052 
exact [ -1.04826 -1.00361 -0.625983 0.686158 0.0391344 0.0057069 

3.3.2. Dirichlet boundary conditions. The only part of the reduction that needs 
to be changed for the imposition of Dirichlet boundary conditions ( uI = u2 = 0 
on aQ after shifting) is in the solution of the linear problems detailed in the 
Appendix. Summarizing the results in Tables 4 and 5, we can say that the 
branches of rotating waves bifurcate in the direction A < 0 while the other two 
are still bifurcating in the direction A > 0. Note that in all the computations, 
the condition for existence of solutions with submaximal symmetry are not 
satisfied. 
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TABLE 4. The results, this time for Dirichlet boundary 
conditions; h refers to the step size for discretization, and 
the reduced equations are determined by the three complex 
coefficients U, V, and W. The predicted values are calculated 
via extrapolation of the results for h = 1/10, ... , 1/40 to 
h = 0. 

h U V W 
1/10 -1.09323 - 0.720547i 1.29119 - 0.018280i -0.173970 - 0.068473i 
1/20 -1.10613 - 0.716250i 1.28505 - 0.056069i -0.183272 - 0.057232i 
1/30 -1.10866 - 0.715232i 1.28371 - 0.063449i -0.184924 - 0.054831i 
1/40 -1.10957 - 0.714853i 1.28323 - 0.066101i -0.185504 - 0.053953i 
pred. -1.11078 - 0.714341i 1.28257 - 0.069612i -0.186258 - 0.052777i 

TABLE 5. The real quantities determining the direction and 
amplitude of branching for Dirichlet boundary conditions at 
various values of the discretization parameter. 

h R| R v R Re(VW) 
1/10 -0.534623 -0.360652 0.197957 1.66750 0.034954 -0.223377 
1/20 -0.555247 -0.371974 0.178915 1.65450 0.036864 -0.232305 
1/30 -0.559269 -0.374344 0.175052 1.65196 0.037203 -0.233912 
1/40 -0.560712 -0.375208 0.173654 1.65104 0.037322 -0.234477 
pred. -0.562622 -0.376363 0.171793 1.64984 0.037478 -0.235217 

3.3.3. Varying do. Table 6 shows an example of predicted real branching co- 
efficients for (1, 2): (2, 1) mode Hopf bifurcations with Dirichlet boundary 
conditions, for a range of values of do, with A = 1. 

TABLE 6. By changing do with A = 1 , we display the predicted 
real quantities determining branching at Hopf bifurcation 
with Dirichlet boundary conditions. These are calculated by 
extrapolating the results for h = 1/10, ... , 1/40 to h = 0. 
Note that there are higher codimension bifurcations occurring 
as we change do; for example, R. changes sign near do = 0.17 
implying that the branch of rotating waves changes criticality 
nearby. When R. = 0, the branching is determined by fifth- 
order terms. 

do Ru Rv Rw l 112 lI2 Re(VW) 
0.02 -0.79909 -0.80675 -0.27259 1.3938 0.0014754 0.027640 
0.04 -0.77077 -0.76450 -0.25075 1.2848 0.0011589 0.0090780 
0.06 -0.75175 -0.73094 -0.23063 1.2167 0.0013566 -0.0086017 
0.08 -0.73854 -0.70214 -0.20973 1.1805 0.0021347 -0.026628 
0.1 -0.72865 -0.67513 -0.18580 1.1724 0.0036326 -0.046176 
0.12 -0.71953 -0.64686 -0.15605 1.1918 0.0060858 -0.068579 
0.14 -0.70772 -0.61322 -0.11631 1.2410 0.0098723 -0.095559 
0.16 -0.68738 -0.56750 -0.059525 1.3258 0.015597 -0.12954 
0.18 -0.64722 -0.49729 0.027399 1.4563 0.024249 -0.17417 
0.2 -0.56262 -0.37636 0.17179 1.6498 0.037478 -0.23521 



A NUMERICAL LIAPUNOV-SCHMIDT METHOD 669 

ACKNOWLEDGMENTS 

We thank Jacques Furter for helpful conversations. P.A. was supported by 
the Royal Society European Exchange Program (UK) and M.Z. was supported 
by the DFG (Germany). We also acknowledge support from a European Com- 
munity Laboratory Twinning Grant during completion of this work. 

BIBLIOGRAPHY 

1. E. L. Allgower, P. Ashwin, K. Bohmer, and Z. Mei, Liapunov-Schmidt reduction for a 
bifurcation problem with periodic boundary conditions on a square domain, Exploiting 
Symmetry in Applied and Numerical Analysis (E. L. Allgower, K. Georg, R. Miranda, eds.), 
Lectures in Appl. Math., vol. 29, Amer. Math. Soc., Providence, RI, 1993, pp. 11-22. 

2. E. L. Allgower and K. Bohmer, Resolving singular nonlinear equations, Rocky Mountain J. 
Math. 18 (1988), 225-268. 

3. E. L. Allgower, K. Bohmer, K. Georg, and R. Miranda, Exploiting symmetry in boundary 
element methods, SIAM J. Numer. Anal. 29 (1992), 534-552. 

4. E. L. Allgower, K. Bohmer, and Z. Mei On a problem decomposition for semi linear 
nearly symmetric elliptic problems, Parallel Algorithms for Partial Differential Equations 
(W. Hackbusch, ed.), Vieweg Verlag, Braunschweig, 1991, pp. 1-17. 

5. , A complete bifurcation scenario for the 2d-nonlinear Laplacian with Neumann 
boundary conditions on the unit square, Bifurcations and Chaos: Analysis, Algorithms, 
Applications (R. Seydel, F. W. Schneider, T. Kupper, and H. Troger, eds.), Birkhauser 
Verlag, Basel, 1991, pp. 1-18. 

6. P. Ashwin, High corank mode interactions on a rectangle, Bifurcation and Symmetry 
(E. L. Allgower, K. Bohmer, and M. Golubitsky, eds), Internat. Ser. Numer. Anal., vol. 
104, Birkhauser, Basel, 1992, pp. 23-33. 

7. , Ph.D. thesis, Math. Institute, University of Warwick, 1991. 

8. P. Ashwin and Z. Mei, Normal form for Hopf bifurcation ofpartial differential equations on 
the square, submitted to Nonlinearity, 1994. 

9. P. Ashwin, K. Bohmer, and Z. Mei, A numerical Liapunov-Schmidt method for 
finitely determined problems, Exploiting Symmetry in Applied and Numerical Analysis 
(E. L. Allgower, K. Georg, and R. Miranda, eds.), Lectures in Appl. Math., vol. 29, Amer. 
Math. Soc., Providence, RI, 1993, pp. 49-69. 

10. P. Ashwin and Z. Mei, Liapunov-Schmidt reduction at Hopf bifurcation of the Brusselator 
equations on a square, University of Warwick, 1992, preprint. 

11. K. Bohmer, Developing a numerical Lyapunov-Schmidt method, Bericht zum Fachbereich 
Mathematik der Philipps-Universitat Marburg, 1990. 

12. , On a numerical Lyapunov-Schmidt method for operator equations, Computing 53 
(1993), 237-269. 

13. K. Bohmer and Z. Mei, On a numerical Lyapunov-Schmidt method, Computational Solutions 
of Nonlinear Systems of Equations (E. L. Allgower and K. Georg, eds.), Lectures in Appl. 
Math., vol. 26, Amer. Math. Soc., Providence, RI, 1990, pp. 79-98. 

14. F. Brezzi, J. Rappaz, and P. A. Raviart, Finite dimensional approximation of nonlinear 
problems, Part I: Branches of nonsingular solutions, Numer. Math. 36 (1980), 1-25; Part II: 
Limit points, Numer. Math. 37 (1981), 1-28; Part III: Simple bifurcation points, Numer. 
Math. 38 (1981), 1-30. 

15. J. D. Crawford, Normal formsfor driven surface waves, Physica D 52 (1991), 429-457. 

16. M. Dellnitz, Computational bifurcation ofperiodic solutions in systems with symmetry, IMA 
J. Numer. Anal. 12 (1992), 429-455. 

17. C. C. Douglas and J. Mandel, An abstract theoryfor the domain reduction method, Computing 
43 (1992), 75-96. 



670 PETER ASHWIN, KLAUS BOHMER, AND MEI ZHEN 

18. H. Esser, Stabilitatsungleichungen fur Diskretisierungen von Randwertaufgaben gewohnlicher 
Differentialgleichungen, Numer. Math. 28 (1977), 69-100. 

19. E. Gekeler, On trigonometric collocation in Hopf bifurcation, Bifurcation and Symmetry 
(E. L. Allgower, K. Bohmer, and M. Golubitsky, eds.), Internat. Ser. Numer. Anal., vol. 
104, Birkhauser, Basel, 1992, pp. 147-156. 

20. K. Georg and R. Miranda, Exploiting symmetry in solving linear equations, Bifurcation and 
Symmetry (E. L. Allgower, K. Bohmer, and M. Golubitsky, eds.), Internat. Ser. Numer. 
Anal., vol. 104, Birkhauser, Basel, 1992, pp. 157-168. 

21. M. Golubitsky and D. Schaeffer, Groups and singularities in bifurcation theory, Vol. 1, Appl. 
Math. Sci., vol. 51, Springer, New York, 1986. 

22. M. Golubitsky and I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rational 
Mech. Anal. 87 (1985), 107-165. 

23. M. Golubitsky, I.N Stewart, and D. Schaeffer, Groups and singularities in bifurcation theory, 
Vol. 2, Appl. Math. Sci., vol. 69, Springer, New York, 1988. 

24. M.G.M. Gomes, Steady-state mode interactions in rectangular domains, M.Sc. thesis, Math. 
Institute, University of Warwick, 1989. 

25. R.D. Grigorieff, Zur Theorie linearer approximationsreguldrer Operatoren, I und II, Math. 
Nachr. 55 (1973), 233-249 and 251-263. 

26. W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, Teubner Verlag, 
Stuttgart, 1986. 

27. J. Martinet, Singularities of smooth functions and maps, LMS lecture notes 58, CUP, 1982. 
28. Z. Mei, Path following around Corank-2 bifurcation points of a semi-linear elliptic problem 

with symmetry, Computing 47 (1991), 69-85. 
29. I. Prigogine and P. Glansdorff, Structure, stabilite etfluctuations, Masson, Paris, 1971. 
30. H. J. Reinhard, Analysis of approximation methods for differential and integral equations, 

Springer-Verlag, Berlin, Heidelberg, Tokyo, New York, 1985. 
31. E. Stiefel and A. Fassler, Gruppentheoretische Methoden und ihre Anwendung, Teubner 

Verlag, Stuttgart, 1979. 
32. F. Stummel, Diskrete Konvergenz linearer Operatoren, I, Math. Ann. 190 (1970), 45-92; II, 

Math. Z. 120 (1971), 231-264; III, Proc. Oberwolfach 1971, Internat. Ser. Numer. Anal., 
vol. 20, Birkhauser, Basel, 1972, pp. 196-216. 

33. , Stability and discrete convergence of differentiable mappings, Rev. Roumaine Math. 
Pures Appl. 21 (1976), 63-96. 

34. J.W. Swift, Hopf bifurcation with the symmetry of the square, Nonlinearity 1 (1988), 333- 
377. 

35. G. Vainikko, Funktionsanalysis der Diskretisierungsmethoden, Teubner Texte zur Mathe- 
matik, Teubner, Leipzig, 1976. 

36. A. Vanderbauwhede, Local bifurcation and symmetry, Res. Notes in Math., vol. 75, Pitman, 
Boston, 1982. 

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, UNITED KINGDOM 
E-mail address: pbafmaths. warvick. ac. uk 

FB MATHEMATIK, UNIVERSITAT MARBURG, LAHNBERGE, D-35032 MARBURG, GERMANY 
E-mail address: boehmerDmathematik.uni-marburg.de 

FB MATHEMATIK, UNIVERSITAT MARBURG, LAHNBERGE, D-35032 MARBURG, GERMANY AND 
DEPARTMENT OF MATHEMATICS, XIAN JIAOTONG UNIVERSITY, XI'AN 710049, PEOPLE'S REPUBLIC 
OF CHINA 

E-mail address: meizhencmathematik.uni-marburg.de 


